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DYN AMICAL EQUATIONS IN A RVB MODEL
OF HIGH-T, SUPERCONDUCTIVITY

Nguyen Van Hieu, Ha Vinh Tan, Nguyen Toan Thang

A model is studied for the high-T, superconductivity based on the
generalized Hubbard Hamiltonian with a two-dimensional lattice con-
taining two interpenetrative sublattices. The origin of the supercon- -
ducting pairing of the mobile charge carriers is their strong on-site
repulsion in the presence of the hopping between nearest-neighbouring
sites. The dynamical equations for all order parameters of the model
were derived in the self-consistent field approximation.

The investigation has been performed at the Institute of Theoretical
Physics, Hanoi, SRV.

HyHaMuyeckue ypaBHeHHA B OJHOMH MOJenn
BbICOKOTEMMNEpaTypHO# CBEPXIIPOBOAUMOCTH
C pe3oHHpYIoLeil BaAJIGHTHOM CBA3LIO

Hryen Ban Xbey, Xa Bun Tau, Hryen Toan Txanr

Hayyaetca Mozmenb BBICOKOTEMNeEpaTypHO#l CBEpXIPOBOAHMOCTH,
OCHOBaHHaA Ha 06o6lieHHOM ramMuIbToHHaHe Xa66apna ¢ mByMepHoi
KPHCTAUIHYeCKOH DelIeTKOM, comepXaluedi [OBe NPOHHKAIOIME APYT
B Npyra nofpeiderkd. MCTOMHHKOM CBepXMPOBOASALIErO CHAapHBaHHA
NOABWXXHBIX HOCHTENEH 3apAla sABAAETCA CHIBHOE OTTAIKHBaHHe
HOCHTeNed, HAXO[AIMXCA B OOHOM H TOM XXe y3Jie, B NPHCYTCTBHH
NepenpbIrHBaHHA MeXAY GMIDKaHWHMH COCeHHMHM y3namu. B npubnu-
XKEHHH CaMOCOIJIaCOBAHHOTO MNONIA BHIBOJAATCA NMHAMHYECKHE YpaB-
HEHHA [UIA BCEX NapaMeTpOB MOPANKE TEOPUH.

Pa6ota sbitnonHeHa B MHcTHTYTe TeoperHueckoii bu3uxu, XaHoi,
CPB.

1. INTRODUCTION

In the RVB theory of high-T, superconductivity proposed by
Anderson’ V' and developed in many subsequent works /2=10/ the
origin of the effective attractive interaction of the charge carriers is
their strong on-site repulsion in the presence of the hopping between
nearest-neighbouring sites of the lattice. The system of dynamical equa-
tions for the order parameter of the superconducting pairing of holes
and other order parameters of the high-T , superconductors with this
RVB mechanism has been derived and studied in the case of the simplest
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model with some two-dimensional lattice containing only one type
of sites”2~ 19/ the original Hamiltonian being that of the Hubbard
model. However the experimental results have shown that the lattice
of newly discovered high-T , ceramic superconductors must contain
two interpenetrative sublattices: sublattice of Cu ions with electrons
in d-orbitals and that of O ions with electrons in p-orbitals. The corres-
ponding theoretical model has been also proposed by Emery /11 and
was studied by many authors” 12718/ In particular, some physical
aspects of the model were discussed qualitatively in a recent paper
by Imada’ /. It is the purpose of the present work to give a more
complete study of this realistic RVB model of high-T, superconduc-
tivity. The starting point is some extended Hubbard Hamiltonian.
The system of dynamical equations for the order parameter of the
superconducting pairing and other order parameters of the model will
be derived. On the basis of this system of dynamical equations it is
possible to study analytically the physical aspects of the medel. To
the periodic Anderson model’ 17~%/ which is similar to that discus-
sed in the present work the application of our reasonings is also straight-
forward. For the simplicity we neglect the effect of the antiferromagne-
tisn of the half-filled Cu band.. Its role will be studied separately in
a subsequent work.

2. EFFECTIVE HAMILTONIAN

The structure of the two-dimensional square lattice of the super-
conductor is represented in Fig.1. Each Cu site has 4 nearest-neighbour-
ing O sites, and each O site has 2 nearest-neighbouring Cu sites. If the
lattice constant of the Cu sublattice equals a, then that of the O sublat-
tice is aA/2. Denote the destruction and creation operators for the
holes at the Cu and O sites by d;,, d;, and Py, P}y, resp., i and j
labeling the sites,o0 =+,: being the spin projection. We start from the
extended Hubbard Hamiltonian
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Here ¢ ; and € denote the energies of the free holes at the sites of the
Cu and O sublattices, resp., t is the hopping constant, Uy and U, are
the repulsion potential energies of two holes with opposite spin pro_]ec-
tions at the same site of the Cu and O lattices, resp., 2 denotes

the sum over all pairs of nearest-neighbouring sites.
We consider the limit of very strong on-site repulsions:

u ,Uu

P >>It|’ IE

d P | ’ l €4 , .
In this case the holes at non-doubly occupied sites belong to narrow
lower energy bands while those at doubly occupied sites have very

high energies. By means of a suitable Schrieffer-Wolf transformation

H=-¢%He!S

. 1 d + P
S=it £{=—n_d p (1-n,_ )+ (2)
<1J> Ud 1-0 10" O =0
+—1np p’ d (l—n )¥+hc.
Up j~o " jo

we rewrite Hamiltonian in such a convenient form that the terms corres-
ponding to the real transitions of the holes from a lower energy band
to a higher one and vice versa are those of the second order of the
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small constants | t] /Uy, [t]/U4 and may be neglected. By applying the
projection operator

Hﬂ(l—nn)(l—pp) 3)
i Jr 3
we can project out the high energy states containing doubly occupying

holes and obtained the effective Hamiltonian for the system of interac-
ting lower energy holes (non-doubly occupying):

o +

Hoq = PHP = Pl 3 a4+ fpf Py Piy +
+t2(dp+ )—JEZBB

<ij> A p<1_|> <kj>

4)

-1, 2 % B . By, 1P,

d<lj\'<lf> ! .

t 2 ¢ ?
T o, Bjx = Pyudks = Pjp G-
p

The four-hole interaction terms in above Hamiltonian (4) are the con-
tributions of the virtual transitions to the intermediate states containing
doubly occupying holes.

3. SFLI-CONSISTENT FIELD METHOD

In this sectlon we apply the well-known self-consistent field me- -
thod of Bogolubov Y and substitute each four-fermion interaction
term in the effective Hamiltonian (4) by a bilinear combination of the
fermion operators in which the coefficient of each product of two
operators is the vacuum expectation value of the product of two remain-
ing ones. Because the vacuum is the ground state of the system of non-
doubly occupying holes the expressions of the vacuum expectation
value always contain explicitly the projection operator (3). In such
a substitution procedure there arise six expectation values which are
the order parameters of the model and may be chosen to be real:

+
ng=<P(d,d )P>-= <P(d d; P>,

i
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+
np = <P(pj7pjT)P> = <P(pj¢p”)P>,
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2P jlen jetr jlep, I €

+ +
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i€D, i€D
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Here D; and D, denote the set of all neighbouring sites of the sites
i and j. We obtain following bilinear Hamiltonian in the self-consistent
field approximation

1~ +
Ho = P{((d—t?and—CF) ? diodio

1
- =nlJ S d;.d
2 PP ikéD, i0 ko *
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where ¢ p is the Fermi energy.
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Note that n4 and n ; are the mean values of the numbers of holes
at each site of the sublattices Cu and O, resp., A is the order para-
meter of the superconducting pairing of holes. The fermion operators
at the sites can be expanded in the form

4
ivR

A -—1 s e d,(v).
<

(N

where R; and R; are the coor-
dinate vectors of the sites i and j,
N, and Np are the numbers of the
elementary cells in the sublattices
of Cu and O, B, and Bp denote
their Brillouin zones and are
represented in Fig.2. For some
wave vector A of B, not belon-
ging to B, there always exists
a unite vector K of the reciprocal
lattice By such that A+K € By .
For such a pair A £ By and A +K¢
< B weset po(X) = qa(_)’\ + K).
Fig.2. Brillouin zones B_(large square) Inserting the expansion (7) into
and B y(small square). P Eq.(6), we obtain

Hy- P, 3 {E,()d (N )+ E HrG)r () +
vEBy

+E (D)sh(0)8,(0) + 8D, () + ()4 ()] + (8)

+ SO, (=9) = 4, (50 GY) + (1, (1) d,() -1 e d (NP,

where
f Gy D Gy 2o - B ©)

Ve Ve
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- 1. 1
By(w) = ¢q = 50pdg~ 503 (e (0% + ¢d(Vy)2] ~ €p

E () = sp—% BTy = € (10)
E)-c -2a.3 Lo 34 o)
r - P 2 d P 2 d“d P F"
()= [t-b(T, + 23] ¢, (),
8(v) = -2A0, +271) 4, (),
é (v)=2[cosy_a+cosy al,
P * y (11)

(v )=2R2cosv a.
¢d X,y X,y

4. BOGOLUBOV TRANSFORMATIONS

In order to establish the system of dynamical equations for six
order parameters n,, n,, g fi,, h and A from the bilinear Hamilto-
nian (8) now we diagonalize this Hamiltonian by means of the Bogolu-
bov transformations. For abbreviating the formulae we introduce two
four-element columns

r, (v) a (v)

R . [ B
Clv)= . ,» D(v) = . 12)

‘ l"(—'l/)' a"(—V)

+ - + >

d¢(—V), B¢(—")

and write the Bogolubov transformations in the matrix form
C(») = X()I'(»). (13)

We can choose the phases of the operators in such a way that all matrix
elements X, j(3), ij 1,2,3,4 of X(v)are real functions of » . Since
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the fermion operators 1, (u), d (v) as well as a; (), B, (v) satisfy
the canonical antlcommutatlon relatlons the matnx X(v) must be

orthogonal. Standard calculations give following results:

Y)  Z(»)

X(v) =
Z(x) -YO)
5 xl#;) X1¥;) 5 X1§:) X14:)
Y(v)= y Z(v) =
X (v) X4 X ) R fv)
M. (D)
X (V) = —M—“T‘
()

M G - (M, ()% M, ()% M ()% 4 M, ()] Ve
M, = 8[(E =€) (B, +£)+ 8%+ gL,
Mo=- 25gE ,

1

2
M - 8L(E, - £) (B, - £) -8 - g,

My, = (B, + &) (8% (B, - &) (By - &)1~ (B, - £)57,

Mo, =- _2ogE 4,

My, = 8L(E, ~ £Q(E,+ép) + 5+ €',

Myy =B, + £9L8"~ (B, - EQ(B 4= £9) ~(By-Ep 8"

My, - BBy - &) (B, - €9 -0 -2 I,

(14)

(15)

(16)

(17)

where ¢ (v) and ¢ ») are the eigenvalues of the Hamiltonian (8)
con'espondmg to the quasiparticles with the destruction operators

aU(v) andﬁ (u),
0 (E +E2)+2(8 +g)+(E _E)e

‘a 2
£ (E2+EY+2(8%+g?) +BE-ED O
B 2
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2 2
0 =[1+4(—2 , 8 y1V2 (19)

E,+E9? (B, -Ep?

The Hamiltonian (8) becomes

Hy =P, 2 1 £,(D e (Ne, () + EDBTNAE) +

vE By

Ed + - g (20)
+E (v)s, (v)s, (V)P

5. EQUATIONS FOR ORDER PARAMETERS

From the results of preceding sections it is straight-forward to
derive the self-consistency conditions of the theory which form the
system of six equations for six order parameters n,, ny, fiy, ﬁp, h and
A . Denote by f T( ¢) the Fermi distribution function at temperature T

1
() = ———. (21)
1+ expé/T
The dynamical equations are:
2 2 (2 2
n = 812 Bff VX () + X[ 1 - 1,(¢p)) +
d
2 2 }
+ XL (E) + X M1 - 1(E )] + T (E)
a® 2 2 2
nd= 4172 Bffd Vxxzzr'r(fﬁ) + X24[1 - fT(fB)] +
d
2 2
+ X, 108 + X (1 - (€]
~ 32 2 2 2
fp =~ }{fd u!xlng(§B)+ X a1~ 1(E0)] +
d
2 2 M 22
+ R + Kigll = 1 (E D) + ty(E )} ¢ () (22)
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2
d = :‘ Iy d "{Xzz ty (£p) +X224[1 — 1 (Eg)l+ Xpyfn(£,) +
B4

2 2 2.
s X[ - DN Ig (v ) + 4(v )]

h = s [fd vixzlezf,r(fﬁ) + X, X, [1 - fT(gB)] +
161r B,
+ X X I &) + XX gl 1 - fq(fa)]} ¢p(;) (22)
2
A= 2214l € — XpaR el 1 - [ (é1 +

X Xiaf( &) - X o& 1 - 151 ¢p(:)

6. DISCUSSION

On the basis of the system of dynamical equations (22) it is not
easy to make obvious conclusions on the physical consequences of the
model. The numerical solution of these lengthy equations must be
studied in a separate work. Here we draw the attention to some imme-
diate physical consequences which might be deduced easily from the
equations (22) in some special case. For thls purpose let us assume
a simplifying approximation by setting & (¥) =0. In this special case
the expressions (18) and (19) for the energies of the quasiparticles
become

E, (v) - Eg(»)

£() = B+ 8 1YE

’ o (23)

E,(v)-E (v) .

£ (D) = — e+ s h1VE

B 2
where . R

- Er(v) +Ed(v)
E(v) = 3 . (24)

56



The dynamical equations are:
a2
n, = 2 Jf AP £ ) + VAL - 1 (£9) + HE))!

81r B4

ny - 2= ffdzﬂuzf,r(fﬁ) FVAL - 1(E)1)

47 By

=2
I

2 > 2
2’ gdd%tqsp(un {uer(,fa)+v2[1-f,l.(fﬁ)]+fT(Es)}

-~ a2 2 2 5 ' (25)
ng= 3 gfduiqsd(ux) + @) Tt g+ v - re

a ->
A =1-(-5-”-2gd v ¢, (v)2uvll -f(£)~ r,.(cfﬁ)], h =0,

where
S SR P | C) I bl
VEG)® + 80
» (26)
vey-- Lo B G VE
VE@)?2+ ()2
In particulaf, the critical temperature T, is determined by equation
1 22 a% ¢p(3)2[
= = 1-1p (&)~ I (€91
I+, 16225, |EG) i) = fr (S @7

Now we deduce some physical conclusions from above results.
First we consxder the expressions (23) of the energies of quasiparticles.
In the limit 8(u) 0 we have

£+ B (0), €40+ Eg() B, (0) + E4()> 0
- -» -»> - -»> -> (28)
£, > -E0), &0)+-EG) B () +Er)<0.
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Thus in the limit 5(¥) -~ 0 ‘fﬁ(;) is always smaller than fa(;)
EB(Z) < € (v). (29)

Therefore in Eq.(27) we can neglect f;(£,) incomparison with (&
This means that the critical temperatire T, depends mainly on the
distribution of the quasiparticles 8. There are two alternatives:

a) If the Fermi energy is nearer to the energy band of the Cu
holes than that of the O holes (E 4+ E > 0), then T, depends mainly
on the distribution of the Cu holes.

b) If the Fermi energy is nearer to the energy band of the O holes
(Eq+ E, < 0), then T, is determined mainly by the distribution of the
0 holes.

From Egs. (10) it is very easy to calculate the width of the energy
bands of the Cu and 0 holes, in the approximation with 8(») = 8(¢)=0,

W, = max Ed(:’) - min Ed(;)

. . (30)
Wr = max E (v) - min E.(v).
We have
W, =4nJ
d PP
(31)
wl’ = 8!\de.

Since we have usually n, << 1, n4= 1, the energy band for the O holes
is much larger than that of the Cu holes.

In conclusion we discuss a necessary condition for the existence
of the solution of Eq.(27). We neglect f T(f ) in comparison with
£ (fB) and write

' 2
. ﬂ' ¢ ( )[1 - (f 1. (32)
Jp+2Jd 167 B, 11-;‘(,,)1 B)

It follows that there exist some average values | Ei and efﬁ of the ener-
gies | E(u)| and fﬁ(v) such that

|E]

—_— =1 P . 33
T r (£g) (33)
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Since
0 < f,rc( fB) <1

the solution of Eq. (33) exists only if the average value | E| satisfies
the necessary condition

|E| <3, +274 (34)

This relation means that the superconducting pairing takes place only
in the case when the Fermi energy ¢p is not very far from the mean
value of the renormalized energies of the Cu and O holes: either the
energy band of the Cu holes is nearly half-filled or the concentration
of the 0 holes is low enough. For the quantitative investigation of
this problem it is necessary to find approximate solutions of Eq. (32).
This will be done in a subsequent work.
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